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Figure 1. EdgeSR is a cutting-edge super-resolution technology designed to enhance the clarity and detail of images at the edge level.Our
demonstrations include successful examples of images enhanced using EdgeSR, compared to the results produced by the ResShift model,
which is currently recognized as a state-of-the-art technique for Single Image Super-Resolution (SISR).

Abstract

In recent years, the field of image super-resolution (SR)
has seen significant advancements, with diffusion models
emerging as a revolutionary approach. These models have
the unique ability to transform low-resolution images into
high-quality, high-resolution counterparts. Despite their
potential, traditional diffusion-based SR methods encounter
significant challenges. For instance, they often require hun-
dreds or even thousands of sampling steps to produce sat-
isfactory results, which results in slow inference speeds and
limits practical use. Moreover, speeding up this process typ-
ically leads to a noticeable decline in image quality, causing
outputs to lack sharpness and detail.

We hypothesize that while edge maps are often visible
in low-resolution images, some edge details may be lost af-
ter super-resolution. Thus, our research presents a novel

plug-and-play module for any diffusion-based image super-
resolution (SR) method, which improves image details by
incorporating an edge detection algorithm into the reverse
diffusion process. By the activation of edge detection dur-
ing the stages of the reverse diffusion process, we optimize
both the efficiency and effectiveness of our model, ensuring
exceptional clarity and detail in the final image output.

1. Introduction

In the dynamic field of computer vision, image super-
resolution (SR) is a crucial challenge that focuses on gen-
erating high-resolution (HR) images from low-resolution
(LR) ones. Super-resolution is particularly vital in ar-
eas such as medical imaging, where it enables more ex-
plicit diagnostic images; surveillance, where it enhances
security footage; remote sensing and satellite image pro-
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cessing, which requires more detailed environmental anal-
ysis; film production, which benefits from higher resolu-
tion video; scientific research, which needs improved mi-
croscopic images; and in video games and virtual reality,
which contributes to more immersive environments [26].
Recently, diffusion models have revolutionized generative
modeling, offering significant advancements in image gen-
eration. These models are particularly effective at captur-
ing and reconstructing intricate image details, making them
highly suitable for super-resolution tasks.

Super-resolution, crucial in enhancing image detail, uti-
lizes advanced methods, including Generative Adversarial
Networks (GANs) and diffusion models. GANs, mainly
through Super-Resolution GAN (SRGAN), employ a gen-
erator and discriminator to produce high-resolution im-
ages from low-resolution inputs. While GANs are known
for generating visually convincing enhancements, they can
also introduce artifacts and sometimes produce unnatural
results [14]. Diffusion models offer two approaches to
super-resolution: inputting low-resolution images directly
into models like Denoising Diffusion Probabilistic Models
(DDPM) for retraining with high-resolution data or modify-
ing the reverse generation path of a pre-trained model to up-
scale images. Both methods, while effective, need more ef-
ficiency during inference. They require extensive sampling
steps that can be computationally demanding and often re-
duce the quality of the resulting images [9, 24]. These chal-
lenges underscore the need for innovative diffusion model
strategies that balance computational efficiency with high-
quality performance in super-resolution tasks [[28]].

Another innovative approach in the realm of super-
resolution (SR) is dubbed ”Resshift,” which reimagines the
use of diffusion models for enhancing image resolution
[41]. Unlike traditional methods, Resshift begins with a
diffusion model that utilizes a shorter Markov chain, specif-
ically designed for the transition between high-resolution
(HR) and low-resolution (LR) images. Central to its strat-
egy is the use of a carefully designed transition kernel that
efficiently shifts the residual information between the HR
and LR states in a stepwise manner. This method capitalizes
on the initial condition provided by the LR image, diverging
from the standard practice of starting from a Gaussian noise
distribution, to iteratively recover the HR image. Such a de-
sign notably reduces the number of diffusion steps required,
thereby increasing inference efficiency.

Despite the innovative aspects and efficiencies intro-
duced by Resshift, it faces challenges in consistently deliv-
ering the highest quality of images. While Resshift signif-
icantly reduces the computational load and streamlines the
process of image super-resolution, the method still strug-
gles with achieving the pinnacle of image quality. A no-
table drawback is that images produced by Resshift often
have blurred edges, which can detract from the overall clar-

ity and detail that is critical in high-resolution imagery. This
issue underscores the need for further refinements and inno-
vations within the approach.

In our advanced approach to super-resolution, we are el-
evating the capabilities of the Resshift model by incorporat-
ing a groundbreaking enhancement that promises to rede-
fine image quality standards. Central to our enhanced strat-
egy is integrating edge guidance into the reverse diffusion
process. This strategic addition targets the critical weakness
of blurred edges in super-resolved images, a common issue
with existing methodologies. By embedding precise edge
detection into the core of Resshift’s process, we aim to dra-
matically sharpen image details and enhance overall clarity.
Here is a concise outline of our method and its potential
transformative impacts:
1. Edge Detection Integrtion: Our approach begins with

applying an edge detection algorithm to the noised low-
resolution image at a specific stage in the diffusion pro-
cess, referred to as step S. At this stage, we generate an
edge map that captures the essential contours and details
of the image. As we progress through the reverse diffu-
sion process, starting from step S, this edge map is used
to guide the enhancement of the image. During each
subsequent denoising step, we calculate the difference
between predicted and the actual edges. By utilizing this
information, we derive an ”anti-gradient” that adjusts
the image reconstruction process, ensuring the edges be-
come closer to the target. This targeted guidance is cru-
cial for producing high-quality, high-resolution images
with sharper and more defined edges.

2. Optimized Image Quality: The integration of edge de-
tection is meticulously fine-tuned to take place during
the latter half of the reverse diffusion sequence. This
timing is critical, as it allows the edge guidance to exert
influence when the image features have become suffi-
ciently discernible, ensuring that the enhancements are
meaningful and effective. By focusing on this stage,
we can significantly improve the image quality with-
out compromising processing efficiency. As a result, the
images produced by our method are not only of higher
resolution but also exhibit superior visual quality. The
enhanced edges and finer details contribute to a more
realistic and visually appealing outcome, setting a new
standard in the field of image super-resolution. By ad-
dressing the common issues of blurriness and lack of de-
tail, our approach delivers exceptional clarity and sharp-
ness, making it a significant advancement over tradi-
tional super-resolution methods.

2. Related Work
Super-Resolution with GANs. Generative Adversar-
ial Networks (GANs) have made substantial strides in
super-resolution, enhancing the process of upscaling im-
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ages significantly. The innovative approach of SRGAN
(Ledig et al.), which pioneered the use of adversarial net-
works for super-resolution tasks, demonstrated that GANs
could effectively generate high-resolution images from low-
resolution inputs, capturing fine details with remarkable
precision [14]. Building on this foundational work, En-
hanced Super-Resolution GAN (ESRGAN) introduced a
more sophisticated architecture and refined training proce-
dures, which led to notable improvements in texture detail
and image realism [36].

A key advancement in ESRGAN was the integration
of Residual in Residual Dense Block (RRDB) networks,
which helped stabilize the training process and improve the
quality of the output images [36]. This design allows deeper
network architectures without the risk of vanishing gradi-
ents, fostering a more robust learning environment for gen-
erating high-quality images.

Moreover, ongoing research in the GAN domain for
super-resolution has explored various modifications to the
standard GAN architecture and adjustments to loss func-
tions. These enhancements aim to capture the intricacies of
high-resolution image generation better. Notably, the adop-
tion of perceptual loss measures has become more preva-
lent. These measures leverage features extracted by pre-
trained deep neural networks, comparing them to assess
the similarity between the super-resolved images and their
high-resolution counterparts more effectively [12]. This
method enhances the perceptual quality of the images, en-
suring that they not only look visually appealing but also
maintain fidelity to the original high-resolution images.

Super-Resolution with Diffusion Models. Another
pivotal method used in super-resolution is the application
of diffusion models. Distinct from the adversarial training
employed by GANs, diffusion models such as Denoising
Diffusion Probabilistic Models (DDPMs) and their variants
offer a fundamentally different approach to image genera-
tion. These models achieve high-quality image outputs by
gradually denoising a noisy signal, which is reversed from
how natural diffusion would progress from order to disor-
der.

Studies like those by Menon et al. [19] and Rombach et
al. [22] have pioneered the use of diffusion models con-
ditioned on low-resolution images. This initial approach
involves conditioning the diffusion process directly on the
degraded input, which guides the denoising steps toward a
more accurate high-resolution output. However, such meth-
ods can sometimes lead to inconsistencies in image details,
particularly when dealing with complex textures or high-
frequency information.

Subsequent studies, such as those by Saharia et al. [24],
have introduced more sophisticated techniques like mask-
ing, where additional contextual information is encoded
into the model to guide the reconstruction process more ef-

fectively. This approach allows for more precise control
over the areas being enhanced, but still struggles with ensur-
ing complete consistency across larger images or sequences
of images, leading to potential discrepancies in texture and
detail.

More recent innovations in diffusion models for super-
resolution involve the integration of cognitive processing
capabilities [31]. This framework enhances traditional
super-resolution methods by incorporating both image ap-
pearance and language understanding to create cognitive
embeddings. These embeddings activate prior information
from text-to-image diffusion models, significantly enrich-
ing the contextual depth and semantic accuracy of the en-
hanced images. Additionally, the CoSeR framework in-
troduces the ”All-in-Attention” mechanism, which consol-
idates all conditional information into a single module, en-
suring comprehensive and uniform image enhancement.

While diffusion models have considerably improved the
capability to generate high-resolution images from low-
resolution inputs, the field continues to face challenges re-
lated to consistency, detail preservation, and the avoidance
of artifacts. Current techniques, while promising, often
struggle to produce high-quality images consistently over
long sequences or across diverse image types without some
degree of degradation or stagnation in image quality.

Edge Detection methods.Edge detection is a crucial
technique in image processing that calculates the image gra-
dient to measure the strength and direction of edges within
an image. In edge detection, abrupt changes between adja-
cent pixel values in an image are identified using classical
edge detection operators, which are categorized into first-
order and second-order differential operators. These meth-
ods are based on gradient change. First-order operators, like
Sobel, Prewitt, and Roberts [18, 25, 32] are designed for
basic edge detection, while second-order operators, such as
Laplace and Canny [3, 35], are optimized for more precise
detection in varying conditions. The Canny operator, devel-
oped in 1986, is renowned for its robustness to noise and
ability to detect subtle edges, making it superior to other
methods such as the Roberts operator, which struggles with
noise, and the Sobel operator, which enhances edges by in-
tegrating Gaussian smoothing.

The next line of methods is based on Gaussian differ-
ence. Among these methods are Difference of Gaussian
(DoG), FDoG, and XDoG algorithms. Difference of Gaus-
sian (DoG) [38] is a technique used for enhancing blurred
images, functioning effectively as a band-pass filter by re-
taining specific frequency information from the original im-
age. The FDoG [13] method enhances DoG by incorporat-
ing directional information into the Gaussian convolution,
allowing for more accurate edge detection by calculating
the Gaussian difference along the edge gradient direction,
effectively suppressing noise and false edges. The XDoG
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algorithm [7] further refines DoG by introducing a constant
that modulates the intensity of Gaussian difference filter-
ing, enabling the transformation of image styles. XDoG
also converts the threshold function into a continuous slope,
combining Gaussian blur results with Gaussian difference
for edge detection that supports more complex styles and
improved visual effects.

Multi-scale feature-based edge detection methods ad-
dress the challenge of detecting edges across varying object
sizes and shapes. The gPb algorithm, introduced by Ar-
beláez et al. [1], combines local cues like brightness, color,
and texture with global structural information from spectral
clustering for enhanced edge detection. Similarly, the SGD
algorithm by Ren et al. [21] leverages sparse coding tech-
niques, directional gradients and multi-scale pooling to im-
prove the detection and localization of edges in complex im-
ages, significantly outperforming traditional methods that
rely on manually designed features.

Deep learning has revolutionized edge detection with
specialized architectures addressing various challenges.
The CASENet by Yu et al. [40] merges multi-label learn-
ing with deep semantic edge detection, using ResNet-based
connections for improved accuracy in edge classification.
RINDNet, introduced by Pu et al. [20], detects multiple
edge types simultaneously using separate decoders for re-
flectance, illumination, normal, and depth edges, enhancing
detection through a sophisticated fusion of spatial cues and
attention modules. COB, developed by Maninis et al. [17],
integrates contour detection with hierarchical segmentation,
employing a novel sparse boundary representation for supe-
rior edge detection. DeepEdge by Bertasius et al. [2] adopts
a top-down multiscale approach, using a bifurcated network
structure to enhance contour detection by combining fea-
tures across scales. HED by Xie and Tu [39] utilizes deeply
supervised learning within a fully convolutional network to
refine edge detection outputs progressively. Lastly, Dex-
iNed by Soria et al. [29] introduces an up-sampling block
in its network to produce finely detailed edge maps, inte-
grating features from multiple encoders for comprehensive
edge detection.

3. Preliminaries
3.1. Latent Diffusion Model (LDM)

Rombach et al. introduced Latent Diffusion Models
(LDMs) [22], designed to decrease the computational de-
mands of Diffusion Probabilistic Models (DPMs), making it
feasible to train them with limited computational resources
while maintaining their quality and versatility. The devel-
opment of LDMs involves a two-stage training process:
1. Perceptual Image Compression: During this initial

stage, an autoencoder is trained to create a lower-
dimensional representational space that is perceptually

comparable to the original data space. This step ensures
a more efficient encoding of the image data.

2. Latent Diffusion: In the subsequent stage, the DPM is
trained within this compact latent space instead of the
traditional high-dimensional pixel space. This approach
makes the training process more scalable and allows for
efficient image generation directly from the latent space
in a single pass through the network.
LDM operates in the latent space of an autoencoder, typ-

ically using architectures like VQ-GAN [6] or VQ-VAE
[33], where the encoder (E) and decoder (D) play crucial
roles. For an input image Im, the encoder (E) transforms
it into a latent tensor x0 ∈ Rh×w×c, initiating the forward
diffusion process. During this process, Gaussian noise is
iteratively added to x0 according to the formula:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), t = 1, .., T (1)

where {βt}Tt=1 are hyperparameters governing the noise
level, and the process aims to transform x0 into Gaussian
noise xT . The objective of the Latent Diffusion Model
(LDM) is to establish a reverse process, represented as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

for t = T, . . . , 1.This process effectively reconstructs the
original signal x0 from the noise-distributed xT . This back-
ward process allows for the reconstruction of the final image
from the latent space with a single pass through the decoder:
Im = D(x0).

After mastering the reverse diffusion process detailed in
DDPM [9], a deterministic sampling technique known as
DDIM [27] can be employed. This technique is mathemat-
ically represented as:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵ

t
θ(xt)√

αt

)
+√

1− αt−1ϵ
t
θ(xt), t = T, . . . , 1,

(3)

where αt =
∏t

i=1(1− βi) and

ϵtθ(xt) =

√
1− αt

βt
xt +

(1− βt)(1− αt)

βt
µθ(xt, t). (4)

In applications that convert text to images, the SD model or-
chestrates the diffusion sequence guided by a text prompt τ .
In the specific case of DDIM sampling, the update formula
modifies to:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵ

t
θ(xt, τ)√

αt

)
+√

1− αt−1ϵ
t
θ(xt, τ), t = T, . . . , 1.

(5)

Within the framework of LDM, the function ϵtθ(xt, τ) is re-
alized via a neural network architecture resembling a UNet
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Figure 2. The overall pipeline of EdgeSR: For the first step is generated latent represantation of LR image. In reverese process, starting
from S step zs is decoded into spatial image using a VQ-GAN decoder. PiDiNet architecture is then applied to image for edge detection,
outputting a predicted edge map ẽ. The loss L(ẽ, e) = ||ẽ − e||2 quantifies the discrepancy between the predicted and ground truth
edge maps. Following this, the anti-gradient is computed to adjust the latent representation serving as the initial state for the subsequent
denoising phase in the diffusion process.

[23], which integrates convolutional layers along with self
and cross-attention mechanisms. Here, xT denotes the la-
tent code of the original signal x0, and a specific determin-
istic process called DDIM inversion [5] is utilized to restore
xT from x0.

3.2. Classifier Guidance

This innovative method, initially presented in the paper Dif-
fusion Models Beat GANs on Image Synthesis [5] in-
volves conditioning a pre-trained diffusion model using the
gradients of a classifier. This method harnesses the classi-
fiers trained on noisy images to guide the image synthesis.
A classifier pϕ(y|xt, t) is trained on noisy images xt at vari-
ous diffusion stages. This classifier is designed to recognize
specific features or attributes (like edges, labels) in the im-
ages. The training involves noisy versions of the images to
mimic conditions encountered during the diffusion process.

Once trained the classifier’s gradients ∇xt log pϕ(y |
xt, t) are used to guide the diffusion sampling process.
These gradients provide directional cues that steer the noise

reduction steps toward enhancing the desired attributes
within the images. The integration of classifier gradients
modifies the standard diffusion sampling process. Typi-
cally, the diffusion model employs a Gaussian distribution
to predict subsequent image states, defined as:

pθ(xt | xt+1) = N (µ,Σ) (6)

The classifier’s influence is introduced by adjusting this dis-
tribution using the gradient information, effectively shifting
the Gaussian distribution’s mean:

µ′ = µ+Σ · g (7)

where g is the gradient of the log probability with respect to
xt, given by:

g = ∇xt log pϕ(y | xt, t) (8)

at the mean image xt = µ.
The modified noise prediction integrates the classifier’s

gradients to alter the diffusion trajectory:

log (pθ(xt | xt+1)pϕ(y | xt)) ≈ N (µ+Σg,Σ) (9)
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This approach redefines the mean of the Gaussian distribu-
tion to include the effect of the gradients, aligning the pro-
cess more closely with the desired attribute enhancements.
The influence of the classifier can be adjusted by scaling the
gradients. A larger scale increases the attribute specificity,
enhancing the desired features more strongly but potentially
reducing output diversity. This trade-off is managed by se-
lecting an appropriate scale factor s, where the gradient term
becomes s · ∇xt

log pϕ(y | xt, t).

3.3. Pixel Difference Network(PiDiNet)

Pixel Difference Convolution (PDC): Pixel Difference
Convolution (PDC) modifies the standard convolution pro-
cess by utilizing pixel differences instead of direct pixel val-
ues, enhancing the model’s ability to capture gradient infor-
mation crucial for edge detection. Unlike traditional con-
volutions that use pixel values, PDC operates on the differ-
ences between pixels within a convolutional kernel’s cover-
age area [30]. This approach is illustrated in the equation:

y = f(∇x, θ) =
∑

(xi,x′
i)∈P

wi · (xi − x′
i), (10)

where (xi, x
′
i) are the pixel pairs in the set P , and wi are the

weights assigned to each pixel difference in the convolution
kernel. PDC can be categorized based on how pixel pairs
are selected:

• Central PDC (CPDC): Focuses on differences between
centrally located pixel pairs.

• Angular PDC (APDC): Utilizes angular relationships
among pixels.

• Radial PDC (RPDC): Captures radial differences from a
central point.

These variants leverage the Extended Local Binary Pat-
tern (ELBP) methodology [15] to encode pixel differences,
thereby enhancing the convolution operation’s ability to dis-
cern textural and edge information.

By embedding PDC within CNN architectures, the net-
work learns to emphasize important gradient features for
edge detection, resulting in improved activation responses
during training. In a 3x3 APDC configuration, eight pixel
pairs are selected and their differences are convolved with
kernel weights to produce the output feature map.

Once training is complete, PDC can be converted back
to standard convolution to reduce computational overhead.
This is achieved by adjusting the kernel weights to directly
incorporate pixel differences, maintaining inference effi-
ciency:

y = w1 · (x1 − x2) + w2 · (x2 − x3) + w3 · (x3 − x6) + . . .

= (ŵ1 · x1 + ŵ2 · x2 + ŵ3 · x3 + . . .) =
∑

ŵi · xi

(11)

This streamlined explanation retains the key aspects of
PDC’s role in enhancing edge detection capabilities within
PiDiNet, focusing on its innovative approach and practical
implementation.

PiDiNet Architecture: PiDiNet features a small model
size, high operational efficiency, and the ability to train ef-
fectively with limited datasets. Inspired by [8] and [10],
the backbone of PiDiNet is a streamlined, depth-wise sep-
arable convolutional structure with shortcuts to enhance in-
ference speed and simplify training. This structure is or-
ganized into four stages, each containing multiple residual
blocks that utilize depth-wise followed by point-wise con-
volutional layers, optimizing for efficiency and size. The
stages are designed to progressively increase in channel ca-
pacity, scaling from C to 4×C channels.

To capture detailed edge features, PiDiNet includes a
side structure that employs a Compact Dilation Convolu-
tion Module (CDCM) to process multi-scale information
from each stage. This module is complemented by a Com-
pact Spatial Attention Module (CSAM) to focus on relevant
features by reducing background noise. The processed fea-
tures are then scaled down through a 1×1 convolution and
upscaled back to the original dimensions using interpola-
tion and a sigmoid activation to form the edge maps. These
maps are combined to produce the final edge detection out-
put through a series of concatenations and convolutions.

The model uses an annotator-robust loss function [16] to
train the edge detection framework, ensuring that it adapts
based on the clarity of the annotations. The loss for the i-
th pixel in the j-th edge map with value pji is defined as
follows:

lji =


α · log(1− pji ) if yi = 0

0 if 0 < yi < η

β · log(pji ) otherwise
(12)

where yi is the annotated edge probability, η is a threshold
for annotator agreement, and α and β adjust the loss based
on the balance of positive and negative samples. This nu-
anced loss function allows PiDiNet to train effectively even
with limited data and annotations.

4. Method
In this section, we outline the primary stages of the pro-
posed Image Super Resolution using Edge-Guided Diffu-
sion model (EdgeSR) approach. While our technique is
versatile and can function as a plug-and-play block for any
diffusion-based SISR method, we opted to prioritize imple-
mentation with the ResShift [41], which is currently recog-
nized as state-of-the-art technique for SISR.

The key idea of our method is to guide the inference pro-
cess of a pretrained SISR diffusion model using an edge
predictor. This approach encourages the edges of the recon-
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Methods Metrics

PSNR↑ SSIM↑ LPIPS↑ CLIPIQA ESSIM↑

ResShift [41] 31.4 0.76 0.069 0.936 0.73

EdgeSR 31.66 0.77 0.085 0.936 0.76

Table 1. Quantitative comparison of ResShift and EdgeSR methods on images taken from test set RealSet65, which is consisted of 35
LR images widely used in recent literatures and 30 images were obtained from the internet. The results show that EdgeSR outperforms
ResShift in terms of PSNR, SSIM, LPIPS, and ESSIM, indicating superior image quality and edge fidelity.

structed image to align with a reference edge map derived
from the low-resolution input image.

4.1. EdgeSR:Edge-Guided Image Super-Resolution

Given a low-resolution image ILR and an edge-map e, our
goal is to reconstruct a detailed high-resolution image IHR.
Figure 2 illustrates the proposed edge-guidance described
in detail below.

We start with a latent image representation zT , which is
the noised version of the low-resolution image ILR. Typi-
cally, the DDPM synthesis involves T consecutive denois-
ing steps zt → zt−1, comprising the reverse diffusion pro-
cess, with z0 representing the final, encoded output image.
During each denoising step from t = T to 1, a density score
gradient estimation ϵ(zt, t) is computed. Based on this gra-
dient and a specific sampler algorithm, the subsequent sam-
ple zt−1 is determined. To enhance edge fidelity in the dif-
fusion process, at each step-t, an edge predictor is applied
to zt, producing an edge map ẽ. The similarity between this
predicted edge map and the reference edge map e is then
quantified by:

L(ẽ, e) = ||ẽ− e||2 (13)

For this purpose, the PiDiNet architecture is utilized,
leveraging its capabilities to accurately guide the refinement
of edge details by influencing the diffusion steps according
to the computed edge loss L(ẽ, e).
Similarly to the external classifier gradient guidance in [5],
we evaluate the anti-gradient −∇ztL. Intuitively, this anti-
gradient pushes an intermediate sample zt to have edges
closer to the target. Now we replace the next-step sample
prediction zt−1 with z̃t−1 = zt−1−α ·∇ztL, where α con-
trols the edges guidance strength. In practice, the impact of
this gradient depends on its relative magnitude to the origi-
nal model step, hence, we normalize it with:

α =
||zt − zt−1||2

||∇ztL||2
· β (14)

with β being a constant throughout the reconstruction pro-
cess. Once being reconstructed with the guidance from the
objective L, the model produces a high-resolution image
characterized by intricate details and sharp edges.

4.2. Implementation of Edge Guidance

In the diffusion-based image super-resolution process, the
initial steps typically do not yield visually meaningful re-
sults due to high levels of noise. Therefore, we focus on ap-
plying edge guidance at later stages when the image features
start to become discernible. Specifically, edge guidance is
implemented from step S down to the first step, where S
is strategically chosen based on the progress of the denois-
ing process. Commonly, we select S = 0.5T , meaning
that edge guidance begins at the midpoint of the diffusion
process. This selection ensures that the guidance is applied
only when the images have sufficiently progressed towards
clarity, maximizing the effectiveness of the edge enhance-
ment while avoiding the less coherent stages of the recon-
struction.

After determining the optimal start step S for edge guid-
ance, our method progresses with a detailed procedure to
enhance edge fidelity in the super-resolved images. The
process begins at selected diffusion step S, where the la-
tent representation zs is decoded into a spatial image format
using a VQ-GAN decoder [6]: Îs = D(zs), where Îs repre-
sents the decoded image from the latent representation.

Following the decoding step, the PiDiNet architecture
[30] is applied to the decoded images to perform edge detec-
tion. PiDiNet utilizes a series of convolutional neural net-
works that have been specifically trained to identify and en-
hance edges within the image. This network processes the
decoded image and outputs a predicted edge map ẽ, which
represents the detected edges at this particular step of the
diffusion process.

After predicting the edge map ẽ from the decoded im-
age Îs using PiDiNet, you calculate the loss L to quantify
the discrepancy between the predicted edge map ẽ and the
ground truth edge map e. This loss provides a measure of
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the performance of the edge detection at each step of the
diffusion process and guides the network in learning to pro-
duce more accurate predictions. The loss function for edge
detection would be formulated as: L(ẽs, e) = ||ẽs − e||2,
where e is the ground truth edge map e, ẽs is the predicted
edge map.

For the next step we compute the anti-gradient (negative
gradient), which is used to adjust the latent representation
zs directly: z̃s−1 = zs − α∇zsL(ẽs, e), where α, as men-
tioned above, is a scaling factor that controls the magnitude
of the update step, ensuring that the edge guidance does not
overpower the natural progression of the diffusion process.

This adjusted latent representation z̃s−1 is then used as
the starting point for the next denoising step in the diffusion
process.

5. Experiments

5.1. Implementation Details

To ensure effective learning of high-frequency details, we
incorporate a novel edge-enhancement module within the
ResShift training pipeline [41] that leverages gradient infor-
mation. The pipeline of ResShift synthesizes low-resolution
images using the RealESRGAN degradation model and em-
ploys a UNet-based architecture enhanced with Swin Trans-
former layers. During the sampling process, starting from
step 8 (T=15), we integrate the PiDiNet architecture [30] at
each subsequent step to enhance edge fidelity. This integra-
tion utilizes PiDiNet’s pretrained weights to extract and re-
fine edge details from both low-resolution inputs and their
VQGAN-decoded representations, ensuring high accuracy
and sharpness in the super-resolved images.

5.2. Qualitative Results

For qualitative evaluation, we used the RealSet65 dataset, a
collection of real-world images specifically assembled for
assessing the ResShift method. In Figure 3, we demon-
strate the evaluation of the EdgeSR method compared to
the ResShift technique. This qualitative analysis focused
on the visual improvements in the images processed by
EdgeSR. Notably, images enhanced with EdgeSR displayed
clearer and more distinct features, with significantly more
visible edges and finer details compared to those processed
by ResShift. These improvements in clarity and edge def-
inition result in a more realistic and aesthetically pleasing
visual experience, underscoring the superior performance
of the EdgeSR method in handling real-world imaging sce-
narios.

5.3. Quantitative Results

The testing dataset for quantative comparison is also based
on the RealSet65 test dataset. Due to resource limitations,

comparisons on the ImageNet dataset could not be per-
formed. We compared EdgeSR with the ResShift method
across several key metrics, each aimed at assessing differ-
ent aspects of image quality. These metrics are PSNR [11],
SSIM [37], LPIPS [42], ESSIM [4] and CLIPIQA [34]. The
Peak Signal-to-Noise Ratio (PSNR) is a standard measure
used to assess the accuracy of image reconstruction, indi-
cating the ratio of the maximum possible power of the orig-
inal image to the power of corrupting noise that affects its
fidelity . The Structural Similarity Index Measure (SSIM)
evaluates the visual impact of three characteristics of an im-
age: luminance, contrast, and structural integrity. SSIM is
designed to improve upon traditional metrics like PSNR by
incorporating perceptual phenomena, providing a more ac-
curate reflection of the perceived image quality. Learned
Perceptual Image Patch Similarity (LPIPS) is another per-
ceptual metric that quantifies the similarity between two im-
ages as perceived by human observers. LPIPS utilizes deep
learning techniques to compare image patches, thus reflect-
ing the perceptual variations more effectively. The CLIP-
IQA (a learning-based image quality assessment method),
and Edge Structural Similarity Index Measure (ESSIM) fo-
cus specifically on learning-based quality assessment and
the accuracy of edge structures, respectively. CLIPIQA em-
ploys machine learning models trained on image quality rat-
ings to predict the quality of unseen images, while ESSIM,
an adaptation of SSIM, specifically emphasizes the preci-
sion of edge details within the image, which is crucial for
applications requiring fine structural details.

As evidenced by the results detailed in Table 1, the
EdgeSR method enhances image quality across nearly all
these metrics, with the notable exception of CLIPIQA,
where the performance remained consistent with that of
ResShift.This indicates that while EdgeSR significantly im-
proves factors like noise reduction, structural integrity, and
perceptual accuracy, it particularly excels in enhancing edge
details as measured by ESSIM. This metric, which specif-
ically assesses the precision of edge structures, shows that
EdgeSR effectively sharpens the edges, contributing sub-
stantially to the overall clarity and detail of the image.

6. Conclusion
Our research has shown that strategically applying edge de-
tection within the diffusion process effectively addresses
common issues in super-resolution tasks, including loss of
detail and edge artifacts. We have developed the EdgeSR
method, a novel enhancement for diffusion-based super-
resolution models that integrates edge guidance to signifi-
cantly improve the clarity and detail of super-resolved im-
ages. Our approach modifies the reverse diffusion process
by incorporating edge guidance at critical stages of image
reconstruction. This integration targets the preservation and
enhancement of edge details, which are crucial for achiev-
ing high-quality, high-resolution images. Evaluation re-
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Figure 3. Qualitative comparisons on four real-world examples. Please increase the zoom level for enhanced visibility.

sults show that EdgeSR not only improves the structural in-
tegrity and edge definition of images but also outperforms
the ResShift model, which was previously the benchmark
in diffusion-based super-resolution techniques in balanc-

ing both efficiency and performance. The enhanced clar-
ity and sharpness provided by EdgeSR lead to more accu-
rate visual representations, marking a significant advance-
ment over existing technologies, which often suffer from

9



blurred or indistinct images. Consequently, EdgeSR sets a
new standard for image super-resolution, offering substan-
tial improvements in both visual quality and detail accu-
racy.
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